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EXACT SOLUTIONS OF LINEARIZED EQUATIONS OF CONVECTION

OF A WEAKLY COMPRESSIBLE FLUID

UDC 532.517.013.4:536.252O. N. Goncharova

A mathematical model of fluid convection under microgravity conditions is considered. The equation
of state is used in a form that allows considering the fluid as a weakly compressible medium. Based
on the previously proposed mathematical model of convection of a weakly compressible fluid, unsteady
convective motion in a vertical band, with a heat flux periodic in time set on the solid boundaries of
this band, is considered. This model of convection allows one to study the problem with the boundary
thermal model oscillating in an antiphase rather than in-phase mode, while the latter was required
for the model of microconvection of an isothermally incompressible fluid. Exact solutions for velocity
components and temperature are derived, and the trajectories of fluid particles are constructed. For
comparison, the trajectories predicted by the classical Oberbeck–Boussinesq model of convection and
by the microconvection model are presented.
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1. Formulation of the Problem. This work continues the study of convective motion of a heat-conducting
fluid. Various aspects of mathematical simulation and rigorous mathematical substantiation of convection models
are described in famous monographs [1–4]. The classical equations of convection are the Oberbeck–Boussinesq
equations. To study convection under microgravity conditions and at the microscopic scale, we use the model of
microconvection of an isothermally incompressible fluid proposed by Pukhnachov (see [1, 2, 5]). Allowance for the
non-solenoidal nature of the velocity field leads to non-Boussinesq effects in fluid flows, which are especially well
manifested in considering unsteady problems [6, 7].

In studying convection in closed domains with solid impermeable boundaries, it was noted that the system
of equations of microconvection of an isothermally incompressible fluid admits a correct formulation of the initial-
boundary problem only for the heat flux set at the boundary and a zero total heat flux, which is a necessary
condition for solving the problem. Pukhnachov [5] proposed a model of convection of a weakly compressible fluid,
which is free from this rigorous condition. The viscosity ν and thermal diffusivity χ are assumed to be constant,
and the equation of state is used in the following form:

ρ = (1 + δp)/(1 + εT ). (1)

Equation (1) is written in a dimensionless form. Here p and T are the deviations of pressure and temperature from
certain equilibrium values p0 and T0, l is the characteristic length scale, v∗ = χ/l is the velocity, t∗ = l/v∗ = l2/χ is
the time, p∗ = ρ0νχ/l2 is the pressure, T∗ is the temperature, and ρ0 is the density. Two basic small dimensionless
parameters that appear in the problem are δ = γp∗ (parameter of compressibility) and ε = βT∗ (Boussinesq number).
Indeed, the Boussinesq number is a quantity of the order of 10−5–10−3 because the temperature coefficient of volume
expansion β is small even if the temperature difference is large (e.g., 50 K). The parameter δ proportional to the
isothermal compressibility coefficient γ is a quantity of the order of 10−14– 10−9, because we have γ ∈ [10−10, 10−9]
for conventional fluids (see [3, 5]).
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The system of hydrodynamic equations in the dimensionless form with allowance for Eq. (1) is written as follows [5]:

1 + δp

1 + εT

dV

dt
= Pr [∇(−p + ξ̄–erV ) + ∆V ] +

ηPr (1 + δp)
1 + εT

g0; (2)

δ

1 + δp

dp

dt
− ε

1 + εT

dT

dt
+ –erV = 0; (3)

1 + δp

1 + εT

dT

dt
− ε2 + εε1T

1 + εT

dp

dt
= ∆T + ε1Φ. (4)

Here Pr = ν/χ is the Prandtl number, η = gl3/(νχ) is the microconvection parameter, ε1 = νv∗/(lcpT∗)
= νχ/(l2cpT∗), ε2 = εε1T0/T∗ = βνχT0/(l2cpT∗), cp is the heat capacity of the fluid at constant pressure, ξ̄ = 1 + ξ

[ξ = λ/(ρ0ν) is the ratio of the coefficients of the second and first viscosity], g0 = g/g (g = |g| and g is the
acceleration of gravity), and the dissipative function Φ is described by the equality

Φ = ξ(–erV )2 + 2D : D,

where D is the strain-rate tensor.
To obtain further expansions in terms of the small parameter of compressibility only, we assume that

ε1 = α1δ, ε2 = α2δ, and αi = O(1) (i = 1, 2) as δ → 0. Then, Eq. (4) becomes

1 + δp

1 + εT

dT

dt
− δ

α2 + εα1T

1 + εT

dp

dt
= ∆T + δα1Φ. (5)

Thus, the sought system of equations for unknown functions V , p, and T are Eqs. (2), (3), and (5). Note, the
equations of microconvection of an isothermally incompressible fluid are obtained from these equations under the
assumption that δ = 0.

Pukhnachov [5] analyzed the criteria of similarity of the problem and the characteristic parameters of the
process, including the characteristic times. In constructing the convection model valid under microgravity condi-
tions, the characteristic internal times t∗ (time of temperature relaxation) and tν = l2/ν (time of relaxation of
viscous stresses), which are of the same order for Pr ∼ 1, and the characteristic time tf (time of variation of the
functions determining the boundary thermal mode) are chosen. The condition Pr ∼ 1 involves a fairly large class
of fluids, and the use of the relation ζ = t∗/tf in the boundary temperature conditions allows one to consider
situations where these characteristic times are strongly different.

The asymptotic expansion of the solution of system (2)–(5) is constructed in terms of the compressibility
parameter δ → 0 and under the condition that ε, Pr , ξ̄, η, α1, and α2 retain finite values. The solution of system
(2)–(5) are sought in the form of formal power series

V =
∞∑

k=0

δkV (k)(x, t), T =
∞∑

k=0

δkT (k)(x, t), p =
P (t)− 1

δ
+

∞∑
k=0

δkp(k)(x, t). (6)

The function p has a singular component as δ → 0, and the quantity (P (t)−1)/δ is identified with the fluid pressure
averaged over the domain Ω. If the walls are motionless and impermeable, the mass of the fluid contained within
the cavity remains unchanged. If the total heat flux through the boundary is other than zero and, hence, the
domain-averaged temperature retains a finite value, the mean pressure changes [in accordance with the equation of
state (1)] by the value of the order of δ−1 as δ → 0. The main terms of expansions (6) satisfy the following system
in the flow domain Ω:

P

1 + εT (0)
(V (0)

t + V (0) · ∇V (0)) = Pr [∇ (−p(0) + ξ̄–erV (0)) + ∆V (0)] +
ηPrP

1 + εT (0)
g0; (7)

Ṗ

P
− ε

1 + εT (0)
(T (0)

t + V (0) · ∇T (0)) + –erV (0) = 0; (8)

P

1 + εT (0)
(T (0)

t + V (0) · ∇T (0))− Ṗ
α2 + εα1T

(0)

1 + εT (0)
= ∆T (0) (9)

(these equations are called the equations of convection of a weakly compressible fluid). In this case, Ṗ = dP (t)/dt.
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The initial-boundary problem for system (7)–(9) is formulated as follows. We consider the no-slip conditions
for the velocity vector

V (0) = 0 (x ∈ Σ, t > 0)

and the conditions of the second kind for temperature, which define the heat flux at the boundary of the domain Σ:

∂T (0)

∂n
= f(x, ζt) (x ∈ Σ, t > 0). (10)

At the initial time, we set the velocity vector and the temperature:

V (0) = V0(x), T (0) = T0(x), x ∈ Ω, t = 0.

The function P (t) satisfies the equation

Ṗ

∫
Ω

[
1− ε(α2 + εα1T

(0))
1 + εT (0)

]
dx = ε

∫
Σ

f dΣ

and the initial condition

P (0) = 1.

Note, in the limiting case with ε = 0, Eqs. (7)–(9) reduce to Navier–Stokes equations for an incompressible
liquid.

The correctness of the formulated initial-boundary problem is examined in [5], where it is shown that the
approximate solution constructed can be considered as an approximation of the order O(δ) as δ → 0 of the solution
of the corresponding initial-boundary problem for the initial system (2)–(5) for t > 1. The formal asymptotics (6)
is invalid for small times, but Eqs. (2)–(5) can be linearized near the state of isothermal equilibrium. Thus, a linear
model of the transitional process arises (see [5]). The asymptotic solution of the linear problem for the transitional
process does not have a pointwise limit as δ → 0, but it can be considered as the main term of internal expansion of
the linearized equations of motion (2)–(5), which describe the initial stage of convection. The transitional process is
accompanied by propagation of nonlinear high-frequency acoustic waves. Let us emphasize that the high-frequency
acoustic oscillations were “filtered” in the resultant equations of the model of a weakly compressible fluid, and they
are taken into account only at the initial stage of motion. The characteristics of oscillations and their localization
are considered in [5].

The procedure of “sound filtration” was also performed in [8–11]. The model of a continuous medium,
applicable for essentially subsonic flows, where the hydrodynamic approximation with “acoustic filtration” is used
to describe near-critical phenomena, is considered in [12, 13]. The monograph [14] is also worth mentioning, where
weakly compressible fluids are considered as fluids with a low Boussinesq number and low compressibility parameter
acting as multipliers in the equation of state at temperature and pressure, respectively. Moseenkov [14] performed
mathematical simulations with an asymptotically generalizing character for the classical Oberbeck–Boussinesq model
and considered solvability of some axisymmetric and general three-dimensional problems, as well as some issues of
solution stability.

2. Exact Solutions of Equations of Convection of a Weakly Compressible Fluid in an Infinite
Band. It was noted that the equations of convection of a weakly compressible fluid admit a group with addition
of an arbitrary function of time to pressure. Let us consider system (7)–(9) for the main terms of expansions of
V (0), T (0), and p(0) (the superscript 0 will be omitted). Let us construct the solutions of these equations, which
are invariant with respect to the operator ∂/∂y + ϕ(t) ∂/∂p, where ϕ(t) is an arbitrary function of time. The
construction is performed in a manner similar to that in [1, 2].

We denote the Cartesian coordinates in space by x, y, z. Let the coordinate system be chosen so that
g0 = (0,−1, 0), and the fluid fill the layer |x| 6 1 with the heat flux according to Eq. (10) being set at the solid
boundaries of this layer. Let the heat-flux value be independent of z. The invariant solutions should have the form

V = (u, v), u = u(x, t), v = v(x, t), T = T (x, t), p = ϕ(t)y + r(x, t).

Then, system (7)–(9) transforms to

Ṗ

P
− ε

1 + εT
(Tt + uTx) + ux = 0; (11)
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P

1 + εT
(ut + uux) = Pr (−rx +¯̄ξuxx); (12)

P

1 + εT
(vt + uvx) = Pr

(
− ϕ + vxx −

η

1 + εT

)
; (13)

P

1 + εT
(Tt + uTx)− Ṗ

α2 + εα1T

1 + εT
= Txx. (14)

Here ¯̄ξ = ξ̄ + 1. We assume that the functions u, v, and Ṗ are functions of the order of the Boussinesq number ε,
and the temperature T is a function of the order of unity, i.e., u = εU(x, t), v = εV (x, t), and Ṗ = εf(t). In
other words, the expansions of the functions u and v into series in powers of the small parameter ε begin from
the first-order terms U and V , and the expansions of the functions T and P begin from the zeroth-order terms T 0

and 1, respectively. Then, the corollary of Eq. (11) is the relation

f(t)− T 0
t + Ux = 0,

and the corollary of the heat-transfer equation (14) is the relation

T 0
t = T 0

xx, (15)

hence,

Ux = T 0
xx − f(t)

or

U = T 0
x − xf(t) + b(t).

According to the no-slip conditions, we have U(1, t) = U(−1, t) = 0, so we first consider the case where

T 0
x (−1, t) = a−(t), T 0

x (1, t) = a+(t), a−(t) = a+(t) = a(t).

In this case, f = 0, which corresponds to the condition of the zero total heat flux (see the situation described in [1,
3, 15]).

Let now a−(t) = −a+(t) = a(t). Then, we have b = 0 and

U = T 0
x − xf(t); (16)

T 0
x (−1, t) = a(t), T 0

x (1, t) = −a(t), (17)

with, e.g., a(t) = A sinωt.
Thus, T 0 is the solution of Eq. (15) in the domain |x| 6 1, t ∈ [0, tend], with condition (17) fulfilled at the

boundary, and the following initial condition can be set at the initial time:

T 0(x, 0) = T0(x), |x| 6 1. (18)

The function U is found from Eq. (16). Note, because of condition (17), we have f(t) = −a(t). Equation (12) now
determines the function r(x, t) with accuracy to an arbitrary function of time:

rx = −Ut/Pr + ¯̄ξUxx.

Equation (13) for the function V (x, t) involves the function ϕ(t), which is found from the condition of the
zero flow rate of the fluid through an arbitrary cross section of the band y = const (see [1, 2]). For this purpose,

we differentiate the condition

1∫
−1

ρv dx = 0 with respect to t and use Eqs. (11), (13), and the equation of state

ρ = P (t)/(1 + εT ) in the situation considered. Then, we obtain

ρtv =
εP

(1 + εT )2
Txuv − P

1 + εT
uxv,

ρvt =
P

1 + εT
vt = Pr

[
− ϕ + vxx −

η

1 + εT

]
− P

1 + εT
uvx,
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and, as a consequence, we determine the function

ϕ(t) =
1
2

[vx(1, t)− vx(−1, t)]− η

2

1∫
−1

dx

1 + εT 0
. (19)

Now Eq. (13) with allowance for Eq. (19) enables us to determine V (x, t) as

Vt = −Pr ϕ̃ + Pr Vxx + Pr ηT 0,

where

ϕ̃ =
1
2

[Vx]
∣∣∣1
−1

+
η

2

1∫
−1

T 0 dx,

and hence,

Vt = Pr
[
− 1

2
[Vx(1, t)− Vx(−1, t)] + Vxx + ηT 0 − η

2

1∫
−1

T 0 dx
]
. (20)

For this equation, we consider the following initial and boundary conditions:

V (x, 0) = V0(x), |x| 6 1; (21)

V (−1, t) = 0, V (1, t) = 0, t ∈ [0, tend]. (22)

Each of the problems (15), (17), (18), and (20)–(22) is solved by the Fourier method. Let us consider periodic
solutions of these problem, where the initial conditions are not set, the boundary conditions are described by the
function a(t) = A sinωt, and the functions T 0 and V have the form

T 0 = Ts(x) sinωt + Tc(x) cos ωt; (23)

V = Vs(x) sinωt + Vc(x) cos ωt. (24)

Then, from the functions U and V , we determine the components of dimensionless velocity u = εU(x, t) and
v = εV (x, t). In further comparisons with the results of the classical Oberbeck–Boussinesq model, we should bear in
mind that the velocity component u in the invariant solution is constant at each time instant (and can be set equal
to zero with allowance for satisfaction of the initial condition). The second velocity component v is determined by
the relations written above.

2.1. Solution of Problem (15), (17), (18) for Temperature. Let us consider the equation

T 0
t = T 0

xx

in an infinite band −1 6 x 6 1 and consider the boundary conditions that determine the heat flux in antiphase at
the band boundaries:

T 0
x (−1, t) = a(t), T 0

x (1, t) = −a(t).

Here a(t) = A sinωt. The search for a solution in the form (23) yields the following problem for Tc:

T (IV )
c + ω2Tc = 0; (25)

T ′c(−1) = 0, T ′c(1) = 0, T ′′′c (−1) = ωA, T ′′′c (1) = −ωA, (26)

whereas Ts is determined in terms of Tc as

Ts = T ′′c /ω

and the following boundary conditions are satisfied for Ts:

T ′s(−1) = A, T ′s(1) = −A.

We introduce the notation ϑ =
√

ω/2 and æ =
√

ω/(2Pr ), where Pr 6= 1. The solution of problem (25), (26) yields
a linear system of algebraic equations of the form

195



−DC1 + CC2 −BC3 + AC4 = Aω/(2ϑ3), DC1 + CC2 −BC3 −AC4 = −Aω/(2ϑ3),

AC1 + BC2 + CC3 + DC4 = 0, −AC1 + BC2 + CC3 −DC4 = 0.

The coefficients of the system are determined as

A = − sinh ϑ cos ϑ + cosh ϑ sinϑ, B = sinh ϑ sinϑ + cosh ϑ cos ϑ,

C = cosh ϑ cos ϑ− sinh ϑ sinϑ, D = −(cosh ϑ sinϑ + sinh ϑ cos ϑ),
(27)

and the solution of problem (25), (26) is the function

Tc = C1 cosh ϑx cos ϑx + C4 sinh ϑx sinϑx,

where

C1 =
Aω

4ϑ3

cosh ϑ sinϑ + sinh ϑ cos ϑ

sinh 2 ϑ cos2 ϑ + cosh 2 ϑ sin2 ϑ
, C4 =

Aω

4ϑ3

− sinh ϑ cos ϑ + cosh ϑ sinϑ

sinh 2 ϑ cos2 ϑ + cosh 2 ϑ sin2 ϑ
. (28)

The function Ts has the form

Ts = (2ϑ2/ω)[−C1 sinh ϑx sinϑx + C4 cosh ϑx cos ϑx].

2.2. Solution of Problem (20)–(22) for Velocity. We consider the problem of finding a periodic solution of
the form (24) for system (20)–(22), which can be rewritten in the following form for convenience:

Vt = PrVxx −
Pr
2

[Vx(1, t)− Vx(−1, t)]− Pr η

2

1∫
−1

T 0 dx + Pr ηT 0,

V (−1, t) = 0, V (1, t) = 0, t ∈ [0, tend].

The function Vc is found by solving the inhomogeneous ordinary differential equation

V (IV )
c +

ω2

Pr 2 Vc =
1
2

[V ′′′
c (1)− V ′′′

c (−1)]− ηT ′′c +
ηω

Pr
Ts +

ηω

2Pr
I1.

The function Vs is determined from the relation

Vs =
Pr
ω

V ′′
c − Pr

2ω
[V ′

c (1)− V ′
c (−1)]− Pr η

2ω
I2 +

Pr η

ω
Tc. (29)

Here

I1 =

1∫
−1

Ts(x) dx, I2 =

1∫
−1

Tc(x) dx.

The solution of Eq. (29) is constructed as the sum of the general solution of the homogeneous equation and
the partial solution determined by the right side of Eq. (29):

Vc = C̄1 cosh æx cos æx + C̄2 cosh æx sinæx + C̄3 sinh æx cos æx + C̄4 sinh æx sinæx + Ṽ ,

Ṽ = G0 + G1 sinh ϑx sinϑx + G4 cosh ϑx cos ϑx.

With allowance for the boundary conditions

Vc(−1) = 0, Vc(1) = 0, Vs(−1) = 0, Vs(1) = 0

the coefficients C̄1, C̄2, C̄3, and C̄4 are found as the solutions of the linear algebraic system

ÃC̄1 + B̃C̄2 + C̃C̄3 + D̃C̄4 = Ẽ, ÃC̄1 − B̃C̄2 − C̃C̄3 + D̃C̄4 = Ẽ,

KC̄1 + LC̄2 + MC̄3 + NC̄4 = F, KC̄1 − LC̄2 −MC̄3 + NC̄4 = F.
(30)

The coefficients of this system are determined as follows:

Ã = Ā + Φ̄1, Ā = cosh æ cos æ, D̃ = D̄ + Φ̄4, D̄ = sinh æ sinæ,
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B̃ = B̄ = cosh æ sinæ, C̃ = C̄ = sinh æ cos æ, Ẽ = −(Φ0 + G1 sinh ϑ sinϑ + G4 cosh ϑ cos ϑ),

K = −2æ2D̄
Pr
ω
− 2æ(C̄ − B̄)

Pr
2ω

, L = 2æ2C̄
Pr
ω

,

M = −2æ2B̄
Pr
ω

, N = 2æ2Ā
Pr
ω
− 2æ(C̄ + B̄)

Pr
2ω

,

F =
Pr η

2ω
I2 −

Pr η

ω
(C1Φ̄c + C4Φ̄s)−

Pr
2ω

2ϑ(G1D + G4A)− Pr
ω

2ϑ2(G1Φ̄c −G4Φ̄s).

The coefficients A and D are calculated by formulas (27), and the coefficients C1 and C4 are calculated by
formulas (28). Here we calculate

I1 =
2ϑ

ω
(C4 − C1) cosh ϑ sinϑ +

2ϑ

ω
(C4 + C1) sinh ϑ cos ϑ,

I2 =
1
ϑ

(C1 + C4) cosh ϑ sinϑ +
1
ϑ

(C1 − C4) sinh ϑ cos ϑ,

and introduce the following notation for convenience:

Φ0 =
ηω

8Præ4
I1, Φ̄1 =

Φ1

4æ4
, Φ̄4 =

Φ4

4æ4
, Φ̄c = cosh ϑ cos ϑ, Φ̄s = sinh ϑ sinϑ,

Φ1 = −4æ3(cosh æ sinæ + sinh æ cos æ)/2, Φ4 = −4æ3(sinh æ cos æ− cosh æ sinæ)/2,

G0 = Φ0 + Φ̄1C̄1 + Φ̄4C̄4, G1 = F1/(4(æ4 − ϑ4)), G4 = F4/(4(æ4 − ϑ4)),

F1 = 2ηϑ2C1 −
ηω

Pr
2ϑ2

ω
C1, F4 = −2ηϑ2C4 +

ηω

Pr
2ϑ2

ω
C4.

The solution of system (30) has the form

C̄1 = ∆̄1/∆̄, C̄4 = ∆̄4/∆̄, C̄2 = C̄3 = 0,

where the denominator is determined as

∆̄ = (Ā + Φ̄1)
(
2æ2Ā

Pr
ω
− 2æ(C̄ + B̄)

Pr
2ω

)
−

(
− 2æ2D̄

Pr
ω
− 2æ(C̄ − B̄)

Pr
2ω

)
(D̄ + Φ̄4),

and the numerators are written as

∆̄1 = −(Φ0 + G1 sinh ϑ sinϑ + G4 cosh ϑ cos ϑ)
(
2æ2Ā

Pr
ω
− 2æ(C̄ + B̄)

Pr
2ω

)
−

(Pr η

2ω
I2 −

Pr η

ω
(C1Φ̄c + C4Φ̄s)−

Pr
2ω

2ϑ(G1D + G4A)− Pr
ω

2ϑ2(G1Φ̄c −G4Φ̄s)
)
(D̄ + Φ̄4),

∆̄4 = (Ā + Φ̄1)
(Pr η

2ω
I2 −

Pr η

ω
(C1Φ̄c + C4Φ̄s)−

Pr
2ω

2ϑ(G1D + G4A)− Pr
ω

2ϑ2(G1Φ̄c −G4Φ̄s)
)

−
(
2æ2D̄

Pr
ω

+ 2æ(C̄ − B̄)
Pr
2ω

)
(Φ0 + G1 sinh ϑ sinϑ + G4 cosh ϑ cos ϑ),

and hence, we have

Vc(x) = C̄1 cosh æx cos æx + C̄4 sinh æx sinæx + Ṽ (x),

Ṽ (x) = G0 + G1 sinh ϑx sinϑx + G4 cosh ϑx cos ϑx.

The following relation is valid for the function Vs:

Vs(x) = Pr [−2C̄1æ
2 sinh æx sinæx + 2C̄4æ

2 cosh æx cos æx

+ 2ϑ2(G1 cosh ϑx cos ϑx−G4 sinh ϑx sinϑx)]/ω
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TABLE 1

Calculation variant Pr η ε ν, cm2/sec χ, cm2/sec g, cm/sec2 β, deg−1 ω, sec−1

1 0.75 1.0 0.01; 0.5 0.150 0.2 0.030 0.0003 0.5; 2.5; 5
2 0.01 0.4 0.01; 0.5 0.015 1.5 0.009 0.0006 0.5; 2.5; 5
3 0.10 0.4 0.02; 0.5 0.150 1.5 0.090 0.0006 0.5; 5

− Pr [2æC̄1(C̄ − B̄) + 2æC̄4(C̄ + B̄)− 2ϑ(G1D + G4A)]/(2ω)− Pr ηI2/(2ω)

+Pr η[C1 cosh ϑx cos ϑx + C4 sinh ϑx sinϑx]/ω.

Thus, we determine the functions Vc and Vs, and simultaneously, V (x, t) of the form (24).
Note, in real situations, the Boussinesq numbers ε are small. The present analysis of the linearized problem

is fairly justified because its solution is given by the main term of the asymptotic solution as ε → 0 (see a similar
justification for the microconvection model in [15]).

3. Trajectory Calculations. The components of the physical (dimensional) velocity are determined as
v1 = v∗u and v2 = v∗v, where u = εU , v = εV , and v∗ = χ/l, and formulas (16) and (24) are used for U and V .
Knowing the functions v1 and v2, we can calculate the trajectories of fluid particles. For this purpose, we have to
solve the Cauchy problem

dx

dt
= v1(x, t),

dy

dt
= v2(x, t), t > 0, x(0) = x0, y(0) = 0. (31)

Note, in constructing trajectories of fluid particles by the Oberbeck–Boussinesq model, we have to use v1 = 0,
whereas the expression for v2 remains unchanged.

The objective of the present work was to determine the trajectories of fluid particles from the calculation
results based on the model of convection of a weakly compressible fluid. The differences from the results predicted by
the classical convection model allow us to conclude that there are non-Boussinesq effects and justify the use of new
mathematical models of convection. In addition, the problem of comparing the results with the data obtained by
the model of microconvection of an isothermally incompressible fluid is posed. Formulation of the initial-boundary
problem for microconvection equations implies setting the boundary heat flux under the condition that the integral
heat flux equals zero. In the problem of convection of a heat-conducting fluid in an infinite band, this is manifested
in the phase changes in the boundary thermal mode, i.e., one lateral boundary is heated, and the other lateral
boundary is simultaneously cooled. It became possible to consider the boundary heat flux periodic in time and
changing in antiphase in simulating convection under microgravity conditions owing to the new mathematical model
of convection of a weakly compressible fluid.

Projections of the integral curves of system (31) onto the plane (x, y), which were calculated by the micro-
convection model with the parameters ε = 0.01 and 0.02, ω = 0.5 and 2 sec−1, are given in [1, 2] and demonstrate
the helical (the main coil is an ellipse) periodic motion of the fluid particle. As was noted in [1], it is rather
difficult to analyze the behavior of the trajectories because of the variety of dimensionless parameters that affect
the solution of the Cauchy problem (31). Nevertheless, we can assume that, under conditions of applicability of
the microconvection model and with the use of the model of convection of a weakly compressible fluid under the
same conditions, the intensity of periodic motion and the particle drift are primarily determined by the values of
the angular frequency ω, the Boussinesq parameter ε, and naturally, by the position of the point (x0, y0) relative
to the lateral boundaries of the domain. These assumptions were validated in [15].

The main parameters of the problem are listed in Table 1 and are conventionally presented by three models
of fluid media and physical situations with different values of Pr , η, and g, similarly to that considered in [15].
The characteristic velocities, Reynolds numbers, and times of the process are also different. To demonstrate the
behavior of the trajectories, whose time evolution is rather complicated, we choose the values ε = 0.5 and 0.02,
ω = 0.5 and 5 sec−1. The value ε = 0.5 is chosen to demonstrate the dependence on the Boussinesq number, which
is most important for trajectory development, and to obtain illustrative results.

The calculations were performed for A = −1 [see the boundary condition (17)], which implies heating of the
right boundary x = 1 both in the microconvection model and in the model of a weakly compressible fluid. This
allows simple comparisons with the results described in [1, 2, 15]. Figure 1a–c for variants 1–3, respectively, shows
the trajectories of fluid particles calculated by three convection models. The trajectories calculated by the classical
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Fig. 1. Trajectory of the fluid particle (ε = 0.5, ω = 5 sec−1, and A = −1) for variants 1 (a) and
2 (b) (t = 0–24 sec, x0 = 0.95, and y0 = 0) and variant 3 (c) (t = 0–240 sec, x0 = 0.8, and y0 = 0).

Oberbeck–Boussinesq model are shown as vertical segments of straight lines, and the trajectories calculated by the
microconvection model display helical motion. They are marked by the dashed curves. The trajectories calculated
by the model of convection of a weakly compressible fluid are also of the helical type and are marked by the solid
curves. Figures 1a and 1b for ε = 0.5 and ω = 5 sec−1 show the trajectories in the time interval from 0 to 24 sec,
for the fluid particle located at the initial time t = 0 at the point x0 = 0.95, y0 = 0. Figure 1c for ε = 0.5 and
ω = 0.5 sec−1 shows the trajectories of the fluid particle in the time interval from 0 to 240 sec (at the initial time
t = 0, the particle is located at the point x0 = 0.8, y0 = 0). The Oberbeck–Boussinesq model describes the motion
over the vertical segment of the straight line x = 0.95 (Fig. 1a and b) or x = 0.8 (Fig. 1c).

Figure 2 shows the calculation results for variant 2 for ε = 0.5 and ω = 2.5 sec−1 the fluid particle at the
initial time is located at the point (0.95, 0). The particle drift is tracked in the time interval from 0 to 600 sec. This
figure shows the complicated helical motion in accordance with the model of convection of a weakly compressible
fluid. Figure 2b shows the particle trajectory for A = 1 [see condition (17)], which corresponds to cooling of
the right boundary x = 1. For comparison with the microconvection model, we should say that the particle-drift
direction changes in the model of a weakly compressible fluid and remains unchanged in the microconvection model
(see Fig. 2a: the downward motion is replaced by the upward motion).
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Fig. 2. Trajectory of the fluid particle for variant 2 with t = 0–600 sec, x0 = 0.95, y0 = 0, ε = 0.5,
ω = 5 sec−1, and A = −1 (a) and 1 (b).
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Fig. 3. Trajectory of the fluid particle for variant 3 with t = 0–24 sec, x0 = 0.95, y0 = 0, ε = 0.02,
ω = 5 sec−1, and A = −1.

Figure 3 shows the trajectories calculated for variant 3 in the time interval from 0 to 24 sec for ε = 0.02 and
ω = 5 sec−1. At the initial time, the fluid particle is located at the point (0.95, 0). By comparing the trajectories, we
can note that the microconvection model predicts a helical trajectory with a larger diameter than that in calculations
by the model of a weakly compressible fluid.

All calculations were performed until the final time tend = 2400 sec. The Cauchy problem for the system of
ordinary differential equations (31) was numerically examined by the Runge–Kutta method [16].

The author is sincerely grateful to V. V. Pukhnachov for discussing the problem formulation and the results
obtained.
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